arXiv:2308.11974v2 [cs.CV] 11 Sep 2023

Blending-NeRF: Text-Driven Localized Editing in Neural Radiance Fields

Hyeonseop Song!* Seokhun Choil”*

Hoseok Do!

Chul Lee! Taehyeong Kim?"

'AI Lab, CTO Division, LG Electronics, Republic of Korea
’Dept. of Biosystems Engineering, Seoul National University, Republic of Korea

{hyeonseop.song, seokhun.choi, hoseok.do, clee.lee} @lge.com

Abstract

Text-driven localized editing of 3D objects is particu-
larly difficult as locally mixing the original 3D object with
the intended new object and style effects without distort-
ing the object’s form is not a straightforward process. To
address this issue, we propose a novel NeRF-based model,
Blending-NeRF, which consists of two NeRF networks: pre-
trained NeRF and editable NeRF. Additionally, we intro-
duce new blending operations that allow Blending-NeRF to
properly edit target regions which are localized by text. By
using a pretrained vision-language aligned model, CLIP,
we guide Blending-NeRF to add new objects with varying
colors and densities, modify textures, and remove parts of
the original object. Our extensive experiments demonstrate
that Blending-NeRF produces naturally and locally edited
3D objects from various text prompts. Our project page is
available at https://seokhunchoi.github.io/Blending-NeRF

1. Introduction

3D image synthesis and related technologies are greatly
impacting industries such as art, product design, and ani-
mation. While recent 3D image synthesis techniques like
Neural Radiance Field (NeRF) [22] have opened up new
applications for 3D content production [8, 14, 26] at scale,
their ability to enable precise and localized editing of object
shapes and colors remains a challenge for broader adoption.
Often time, a more localized and granular editing of 3D
objects, especially attaching or removing certain objects of
certain styles, is still difficult and costly in spite of several
recent attempts at 3D object editing [4, 18, 21, 35, 40].

Previous attempts, such as EditNeRF [18] and NeRF-
Editing [40], only offer limited and non-versatile editing
options, while Text2Mesh [21] and TANGO [4] allow only
simple texture and shallow shape transformations of entire

“Equal contribution.
fCorresponding author. Partially conducted at LG Electronics.

tachyeong kim@snu.ac.kr

(b) twinkle bulldozer

(c) bulldozer in glass

(d) bulldozer frame

Figure 1. Representative results of text-driven localized object
editing using our method. (a) Bulldozer is the original object, and
each editing is performed by (b) color change, (c) density addition,
and (d) density removal operations.

3D objects. CLIP-NeRF [35] propose a generative method
with disentangled conditional NeRF for object editing but
it requires a large volume of training data for the targeted
editing category and is hard to edit only the desired part of
objects locally. They present an additional approach, fine-
tuning a single NeRF per scene with a CLIP-driven objec-
tive, which can edit object appearance but not shape well.
To achieve effective and practical localized editing of 3D
objects by any text prompts at scale, it is necessary to apply
style changes to specific portions of the object, including
selectively changing color and locally adding and remov-
ing densities, as shown in Figure 1. In this study, we pro-
pose a novel method for localized object editing that allows
modification of 3D objects by text prompts, enabling full
stylization including density-based localized editing. We
believe that relying on the simple fine-tuning of a single
NeRF to generate new densities in the low initial density

http://seokhunchoi.github.io/Blending-NeRF

area or to alter existing densities through a CLIP-driven ob-
jective is inadequate for achieving complete stylization of
shapes and colors. Instead, our approach involves parame-
terizing specific regions in the implicit 3D volumetric rep-
resentations and blending the original 3D object representa-
tion with an editable NeRF architecture specifically trained
to render the blended image naturally. We use a pretrained
vision-language method like CLIPSeg [19] to specify the
area to be modified in the text input workflow.

The proposed method is based on a novel layered NeRF
architecture, called Blending-NeRF, which includes a pre-
trained NeRF and an editable NeRF. There are some studies
that employ multiple NeRFs and train them simultaneously
to individually reconstruct the static and dynamic compo-
nents of a dynamic scene [7, 33, 37, 39]. On the other hand,
our approach introduces an additional NeRF to facilitate
text-based modifications in specific regions of a pretrained
static scene. These modifications encompass various edit-
ing operations, including color changes, density addition,
and density removal. By blending density and color from
the two NeRFs, we can achieve fine-grained localized edit-
ing of 3D objects. In summary, our contributions include:

* We propose the novel Blending-NeRF architecture that
combines a pretrained NeRF with an editable NeRF
using various objectives and training techniques. This
approach allows to naturally edit the specific regions of
3D objects while preserving their original appearance.

* We introduce new blending operations that capture the
degree of density addition, density removal, and color
alteration. Thanks to these blending operations, our
method allows for precisely targeting the specific re-
gions for localized editing and constraining the degree
of object editing.

* We conduct several experiments involving text-guided
3D object editing, such as editing of shape and color,
and compare our approach to previous attempts and
their simple extensions, showing that Blending-NeRF
is both qualitatively and quantitatively superior.

2. Related Work

Text-Guided 3D Object Generation This task aims to
create 3D objects from natural language descriptions. Re-
cent advancements in joint embedding of images and
text [28, 41], text-to-image generation [29, 30], and neu-
ral rendering [3, 22, 23, 32, 34] have made it possible to
generate 3D objects without 3D supervision, using only tex-
tual guidance. CLIP-Forge [31] uses an auto-encoder and a
contrastive language-image pretraining (CLIP) [28] embed-
ding to generate multiple object geometries for a given text
query without paired text and 3D data. It is not that efficient,
though, requiring a large unlabeled 3D dataset to train its

autoencoder and to learn a latent space for shapes. Dream-
Field [8] optimizes NeRF from multiple camera views to
produce high-quality objects so that the CLIP embeddings
of the rendered image and target text are similar. It im-
proves the fidelity and visual quality of generated objects
using simple geometric priors. DreamFusion [26] uses a
pretrained 2D text-to-image diffusion model [30] and NeRF
to perform text-to-3D synthesis, while CLIP-Mesh [1 1] op-
timizes texture, normal, and vertices position of the mesh
using a differentiable renderer and CLIP. Our work utilizes
NeRF and CLIP to generate 3D objects but focuses on lo-
calized editing of objects based on textual guidance, which
is different from previous studies.

3D Object Editing Preserving the original object struc-
ture while meeting user intent is crucial in object editing
tasks. Liu et al. [18] proposed a conditional radiance field
that enables color and shape editing by learning disentan-
gled volumetric representation and propagating sparse 2D
user scribbles over the 3D region. NeRF-Editing [40] estab-
lishes the correspondence between explicit mesh represen-
tation and implicit volume representation, allowing for con-
trollable shape deformation such as increasing or decreasing
the size of 3D objects. Our method also aims at localized
editing but differs in using texts as input and focusing on re-
shaping and restyling rather than simple modifications [1&]
or geometric transformations [40].

Text-driven 3D object editing methods have also been
studied. Text2Mesh [21] and TANGO [4] edit the style of
3D objects with the supervision of CLIP. Text2Mesh styl-
izes a 3D mesh by predicting color and local geometries for
a given target text prompt. TANGO enables photorealistic
3D style transfer by automatically predicting reflectance ef-
fects according to a text prompt without task-specific train-
ing. CLIP-NeRF [35] allows for control of global structure
and appearance individually by leveraging disentangled la-
tent representations from conditional generative models, but
it requires a significant amount of 3D dataset (e.g., 150k
chair images [24] that include sofas and wood chairs for
training). While CLIP-NeRF also presents a single NeRF-
based editing method per scene that can edit an object’s
color, it has a limitation in that it cannot edit its density
well. That is, it fails to achieve satisfying results while edit-
ing the shape of a single NeRF by a text prompt. Our ap-
proach overcomes such limitations, allowing full stylization
to the specific regions as demonstrated in our experiments.

3. Background

3.1. Neural Radiance Field

Neural Radiance Field (NeRF) [22] implicitly represents
a 3D scene with a multi-layer perceptron (MLP) which pro-
duces a density and a color for a queried ray point sam-
ple. Specifically, given a camera ray r(t) = o + td passing

Editable NeRF
color & density
L] D D L) oepe
mi
¥ blending ratios
position

view direction y(d)

f ﬁ color & density
0 o°
-E NN

Pretrained NeRF

y(x) —

Tsource = ‘boat”

7% obal Tiarget = “burning boat”
globa \

Loca//zat/an

CLIPSeg

Blended Volume
Rendering I#

Figure 2. Overall architecture and main objectives. The target editing region is specified by the source text Tsource in the original rendered
image 7°, and the editable NeRF g is trained to render a blended image I” that matches the target text Ttarger. The CLIP encoders and other

localized editing objectives are omitted for simplicity.

through a image pixel, depth t € [thear, trar|, and camera cen-
ter o, it takes as input a 3D position x and viewing direction
d to produce a density 0° € [0, 00) and a color ¢ € [0, 1]3:

(0%, ¢%) = fo(v(x),7(d)), (M

where 6 is the parameterized network weights, and v is a
positional encoding. Then, NeRF estimates the expected
color of a ray by using quadrature with K sampled points:

K
°(r) = TPage, 2)

where TP = [5_, (1 — a2,) is a transmittance [27] with
an alpha value af = 1 — exp(—opdx) and 0 = tp1 — tg
is a distance between two adjacent sampled points on a ray.
An accumulated opacity of a ray also can be estimated as:

dCC Z Tk ak (3)

3.2. Connecting Text and Images

There have been various studies on vision-text joint rep-
resentation learning methods [10, 17, 41] including CLIP
[28]. CLIP’s image and text encoders are pretrained on
large dataset to ensure that the representation vectors of
image-text pairs match well. Based on these aligned rep-
resentations, CLIP losses (i.e., global [25] and directional
[6] CLIP loss) are widely used in text-guided image editing
[1,2,6,12,25,35]. The global CLIP loss Lgjgpa({,71") min-
imizes the cosine distance between an image [and a text T’
in the CLIP embedding space:

Eglobal (17 T) = Dcos(Eimg(I)a Etxt(T))> (4)

where Ein,(+) and Ei(-) are the image and text encoder of
CLIP, and D, is the cosine distance. In another way, the

directional CLIP loss Ly, controls the direction of change
for the image embedding vector. This method is known to
prevent mode-collapsed problems [6], which is defined as:

Edir(Largeh Ttargeh Isource7 Tsource) = Dcos (Ala AT)a (5)
where AI = Eing(Liarget) — Pimg(Lsource) and AT =
Etxt(Ttarget) - Etxt(Tsource)- Here, Itarget and Ttargel are target
edited image and its text description, and Isoyrce and Tyource
are original image and its text description. We use both
CLIP losses for text-driven object editing.

In addition, CLIP is also used for text or image-driven
segmentation tasks in a zero-shot manner [5, 16, 19, 36, 38].
We utilize CLIPSeg [19] to get the target image region for
a queried text for localized object editing.

4. Method

Our goal is to locally edit the pretrained NeRF model
with the natural language as guidance. To this end, we pro-
pose Blending-NeRF, which consists of pretrained NeRF
fo for the original 3D model and editable NeRF g4 for ob-
ject editing. The weight parameter 6 is frozen, and ¢ is
learnable. The edited scene is synthesized by blending the
volumetric information of two NeRFs (Section 4.1). We
use two kinds of natural language prompts: source text and
target text, describing the original and edited 3D model, re-
spectively. Blending-NeRF performs text-driven editing us-
ing the CLIP losses with both prompts (Section 4.2). How-
ever, using only the CLIP losses is not sufficient for local-
ized editing as it does not serve to specify the target re-
gion. Thus, during training, we specify the editing region
in the original rendered scene using the source text. Si-
multaneously, the editable NeRF is trained to edit the tar-
get region under the guidance of localized editing objective
(Section 4.3). An overview of the proposed method is de-
picted in Figure 2. Note that Blending-NeRF is trained in
an end-to-end manner.

4.1. Blended Volume Rendering

Editable NeRF The editable NeRF extends NeRF to pro-
duce two blending ratios 3° € [0,1] and 57 € [0,1] in
addition to a density o € [0, 0) and a color c® € [0, 1]
for seamlessly blending the ray points of two networks:

(0%,¢% 87, 8°) = gp(v(x),7(d))
O_O (0')0_0 (6)
c” = (1-8%c’ + p°°.

The density blending ratio 57 determines the amount of
density ¢ in the pretrained NeRF that is removed for object
modification. Consequently, the modified original density
o°' contributes to the dominance of the editable NeRF den-
sity 0¢. Similarly, the color blending ratio ¢ controls the
amount of color ¢® modified in the pretrained NeRF. In this
case, to prevent the modified original color ¢ from chang-
ing to a specific color (e.g., black or white), it is determined
by mixing the editable color c® by the proportion of 3¢. Fi-
nally, we get O'Ol, c"/, o€, and c® to blend the two NeRFs.
Using these values, partial addition and removal of density,
and change of color are performed on the original scene by
the following blending operations.

Blending Operations A previous work [20] introduces a
method for augmenting the static part with the transient part
of the NeRF outputs on volume rendering to disentangle
the static and transient components. Likewise, the blended
color CP (r) of aray can be calculated as:

)

ag =1- exp(fagdk), 05 = o +0f,
where a9 =1 — exp(—0? 6;) and af = 1 — exp(—0{dy).

In parallel, the color C¢(r) of the ray for the editable
NeRF is calculated as:

K

Ce(r) = > T (ag B+ of)ek. ®)

k=1

The colors C", Ce, and CP are later used to render the three
images: original, editable, and blended images.

We also define three types of accumulated opacity for the
ray: Fadd, premove ang M€ The accumulated opacities

Original Image 1°

Editable Image /¢

Blended Image I#

Figure 3. The rendered images of the ‘bulldozer’ object edited by
the target text ‘bulldozer amber’. Given a sampled camera pose,
Blending-NeRF renders three types of images for training.

are calculated as follows:
E;;‘SS Z Tﬂak
K
%W)=ZW—WM/Z% ©)
k=1 k=1

K
Egpunes(r) = > T{af 55,

acc

where T,;’/ = Z, 11(1 - ak/) Each accumulated opac-

ity denotes the degree of adding density, removing density,
and changing color for the rendered pixel by the blending
operations. Specifically, E;Sf represents the amount of den-

sity added by the editable NeRF, and E;gg‘ove represents the
amount of density removed from the pretrained NeRF by
the blending ratio 37. The last opacity Fa<"* means the
amount of original color cj, changed by the blending oper-
ations. Note that the modifications to the object’s parts that
are occluded in a specific viewpoint are ignored in this op-
eration. These accumulated opacities for the ray are used to
limit the region and amount of the object editing, guided by
the source text. This method, which plays an important role

in localized object editing, is described in Section 4.3.

Volume Rendering There are three types of images that
are rendered with Blending-NeRF, namely original, ed-
itable, and blended images, during our localized object edit-
ing process. To train our model, we first sample a camera
pose to generate these images from the sampled viewpoint.
For 360° bounded scenes, we set a uniform distribution over
the upper hemisphere with bounded radius [9] and sample a
camera pose each training iteration.

Given the sampled camera pose p, the rays are also
sampled at even intervals to make an image patch of size
S covering the entire extent of the image plane (refer to
Appendix for details). Then we can obtain S x S image
patches I°(0,p), I¢(6, ¢,p), and I°(6, ¢, p) for original,
editable, and blended images by using Eq. (2), Eq. (8),
and Eq. (7). Likewise, for our localized editing, the three
types of opacity patches E244(0, ¢, p), B (0 ¢, p), and

Lhdnge

Fiace = (0, ¢, p) of Sx .S size are also obtained using Eq. (9).
Once trained, Blending-NeRF can render over an entire im-
age without pixel strides at any camera pose. Examples of
rendered images are shown in Figure 3.

4.2. Text-Driven Objective

We leverage the pretrained CLIP model for text-
driven object editing on Blending-NeRF. For image
patches I°(60,p), I¢(0,¢,p), and I°(0,¢,p) ren-
dered in the previous step, we apply the global
and directional CLIP losses of Eq. (4) and Eq. (5):
'C;;lobal(‘[e (97 d)v p)v T‘targel)’ »Cflobal(-[ﬁ (97 ¢v p)v ﬂa.rget) and
Lai:(I°(0,,p), ngehIO(e,p),Tmm). The global CLIP
alobal and Eglobal make CLIP embeddings of both

editable image I¢ and blended image I° close to that of
target text Tiyger. The directional CLIP loss ensures that the
direction of representation vector from the source image
I° to the blended image I is similar to the direction from

losses L€

the source text Tyource to the target text Tiyge. The total
text-driven objective is defined as:
Letip = Ldir + Aglobal Lelobal, (10

where Lgighal = Egobal + Eglobal is the global CLIP loss, and
Aglobal 18 @ hyperparameter for balancing the directional and
global CLIP losses.

Image and Text Augmentation Before feeding image
patches and text prompts to CLIP encoders, we apply im-
age and text augmentations. Previous work [14] shows that
applying 2D image-based augmentations can prevent ad-
versarial generation problems when using CLIP guidance.
Similarly, we augment image patches in the order of differ-
ential [42] and random perspective augmentations. We use
the text templates [2] to augment Tyoyrce and Tiarges.

4.3. Localized Editing Objective

The text-driven objective can guide Blending-NeRF to
edit the original object to match the meaning of a given
target text Ti,gec. However, with the CLIP losses alone,
it is challenging to specify the region and amount of
editing. Thus, we employ a text-guided semantic seg-
mentation method and the opacity patches £29(6, ¢, p),

acc

Eremove(g ¢ p), and ESe"(0, ¢, p). Note that precisely
targeting the region for localized editing and constraining
the degree of object editing is well handled by these three
accumulated opacities, which capture the extent of density
addition, density removal, and color alteration through our
blending operations. In addition, joint optimization of lo-
calizing target region and constraining editable amount to
maintain the high-fidelity results of the pre-trained NeRF
is a vital factor in producing localized editing that is less
prone to noise, as demonstrated throughout our experimen-
tal results in Section 5.4.

Localizing Target Region We use CLIPSeg [19] to guide
the region to be edited only with a user text prompt Tource-
Specifically, we leverage zero-shot segmentation h(I,T') to
produce a probability map of the pixels in an image I as-
sociated with the input text 7". We first estimate region M,
which is more likely to be Tyource than the text ‘photo’ in the
source image 1°(0, p), as follows:

M = 1(h(I°(0,p), Tsource) — H(I°(0, p), ‘Photo’)), (11)
where function 1(-) pixel-wisely outputs 1 if its input is
positive, and 0 otherwise. After applying /Ny dilation op-
erations to M, we get the positive target region M which
specifies the region of interest to edit. Additionally, we
specify the negative target region M _ which designates the
region of non-interest by applying N dilatation operations
to M, and element-wise not operation. Then the loss to
localize the target region is:

Eregion = MSE([O}SXSH M_0© Esum)+

AMSE([1]sxs, M+ ® Eqm), (12)
where Esum = Zx:{add,remove,change} E;:CC(97¢7 p) is the
pixel-wise sum of the three accumulated opacities, ® de-
notes pixel-wise multiplication, and A is a hyperparam-
eter for balancing the two terms. The first term prevents
modification outside the target region, while the second en-
courages editing within the target region.

Constraining Editable Amount To limit the amount of
area being modified, we use an opacity loss similar to the
transmittance loss in the previous work [8]. The opacity loss

Copmty is defined using the opacity patches £24(6, ¢, p),

Eremove(.,)’ and E;?gnge(0, ¢,) as follows:

acc

Lopamy—ZmaXT , mean(am(,0,P)))s (13)

x

where © = {add, remove, change} and {7%} are the thresh-
olds to limit the amount of addition and removal of density,
and change of color. These thresholds are annealed for sta-
ble learning.

We also apply the regularization loss L, to the opacity

patch E;Sf(, &, p) to avoid adding ambiguous densities:

—mean(F(E™4(0, ¢, p))), (14)

where F(z) = zlogyz + (1 — 2)logy(1 — 2) is the bi-
nary entropy function. Note that we use stop gradients
to ensure that localized editing losses do not indiscrimi-
nately affect training. In particular, the losses for opac-
ity patch E249(6, ¢, p) to add density are only concerned
with the backpropagation by editable density o°. Like-
wise, the losses by opacity patches EM™(¢ p) and

acc
Lhdnge (

Eice , ®, p) propagate only to 37 and /3¢, respectively.

Lreg =

(original) old *

gold texture *

boat

hotdog

green-chair bulldozer

brown-jar

@00 @00 L _jeXe]

Figure 4. Examples of editing in which the common target text templates are applied to various 3D objects.

oil pastel *

cyberpunk neon * burning * * amber snow on *

@00 ®00 ®00 oeo
The images in the

first column are the original objects. The object names are listed on the left side of the figure, and the target text templates are
listed on the top of the figure. For example, the second image in the first row is an edited result with ‘old boat’, which com-

bines ‘boat’ and ‘old *’. We denote the e as changing colors,

as adding densities, and e as removing densities of the object.

If two or more dots exist, the editing is performed with the corresponding case together. This notation is common to all figures.

e : changing colors

Finally, our total objective L for text-driven localized
object editing is:

Actotal = »Cclip + >\1 »Cregion +)\Q»Copacity + >\3£reg7 (15)

where A1, Ao, and A3 are hyperparameters to balance losses.

5. Experiments and Results

5.1. Implementation Details

The pretrained NeRF consists of an 8-layer MLP of 256
hidden units with ReLU activations as in the architecture
of the originally proposed NeRF [22]. For the editable
NeRF, we partially modified the original NeRF using resid-
ual blocks (see Appendix for details). We followed the same
procedures in the hierarchical volume sampling of NeRF as
well, but we did the importance sampling based on Tkﬁ af
instead of T} af. The patch size for all images and accumu-
lated opacities is S = 72. We used Adam Optimizer and the

: adding densities

e : removing densities.

learning rate is linearly decayed from 5 x 10~ to 10~ for
the first 1k iteration steps and stays at 10~ for the remain-
ing steps. We included the regularization loss component
only after the first 1k iteration steps, once the density of
the newly added object has reached a certain level of form.
Regarding the hyperparameter values, we employed the fol-
lowing: Agiopat = 0.5, A1 = 1, Ay = 2, and A3 = 0.2. We
evaluated our method using a variety of target texts and six
3D objects (ship, hotdog, mic, lego, chair, and ficus) from
the Realistic Synthetic 360° dataset [22].

5.2. Localized Editing

To investigate the performance of our method for local-
ized object editing, we performed a variety of experiments
such as addition or removal of densities, and color changes
to the original objects. Figure 4 shows the edited results
obtained by applying the same target text templates to all
source objects. Our method clearly achieves a detailed edit-

boat

iceberg

@& W &

dlsh without *

hotdog

* jelly pretzel bread

mic

bulldozer

= Ciego house

&

green-chair

leio tank

oceo L)
|r0n throne leather sofa round shape backless *
F v
& o
T SEEL
2
S
2
N
oeo oceo coce
apple pineapple translucent *

Figure 5. Examples of editing in which the target-specific text
descriptions are applied to 3D objects. The texts on the left of the
images refer to the editing target on the original objects.

ing of the target object while preserving the source struc-
ture. For example, when given a source text ‘boat’ and a
target text ‘gold texture boat’, a well-stylized boat with a
gold texture was rendered while preserving the background.
The localized editing also worked well when simultane-
ously adding densities to an object and changing its colors.
In the examples of ‘burning bulldozer’ or ‘snow on mic’, the
appropriate ambient effect appeared naturally along with
editing the target object.

We extended our experiments to a more diverse set of tar-
get texts, as shown in Figure 5. In particular, we performed
object editing tasks to remove densities. For instance, given
a source text ‘green-chair’ and a target text ‘round shape
backless green-chair’, the back and armrests of the chair
were removed to achieve the editing goal.

5.3. Comparison with Baselines

Baselines To demonstrate the effectiveness of our ap-
proach, we compared it against three different variants of
CLIP-NeRF. Wang et al. [35] present a single NeRF-based
editing method per scene (let’s call it CLIP-NeRF-c). We

CLIP-NeRF-¢ CLIP-NeRF-D Ours

CLIP-NeRF-f

mic >
crochet mic

hotdog >
lightning hotdog

boat >
turtle

L &
@
9

bulldozer >
lego shovel

boat >
water

Figure 6. Comparison with baselines. Our method demonstrates
superior ability, particularly in editing density, as evidenced by
the third row where we added densities, as well as the fourth and
fifth rows where we removed densities. In contrast, the competing
methods fail to achieve these tasks.

CLIP-NeRF-¢c ~ CLIP-NeRF-f CLIP-NeRF-D Ours

Dp, 1 029 .041 .047 .051
Scurp T .065 .081 .084 128
MPcrip T .063 .077 .080 21

Table 1. Quantitative comparison with baseline models. We mea-
sured the preservation of the original appearance (D) and the
alignment with the target text (Scrip). We also measured the ma-
nipulative precision (MPcrip) to consider them both.

compared our method against CLIP-NeRF-¢, which only
fine-tunes its color-related layers, using officially released
code. We also evaluated our method against CLIP-NeRF-f,
which fine-tunes all layers instead of just the color-related
ones. Additionally, we compared our method against an-
other variant, CLIP-NeRF-D, which uses distilled feature
fields [13] as a localization module using official code that
fine-tunes all layers.

Evaluation Metric We evaluated the quality of text-
driven object editing using the manipulative precision (MP)
metric [15]. The MP metric takes into account two aspects:
the preservation of the original appearance, which is mea-
sured as the L1 normalized pixel distance (D,) between
the original and edited image, and the alignment with the
target text, which is measured by the CLIP score (Scpip)

w/o Lglobal w/o Ldir

oeo

Figure 7. Ablation study on the text-driven objectives. The ‘boat’
object is edited with ‘submarine’ (upper row) and ‘exploding boat’
(bottom row) as the target texts.

W/ Lycgion WO Lopaciy ~ WI0 Lreg WIO Lgioba W/ Lair ~ Ours

Dp, | 049 .085 .053 .053 .049 051
Scup T 121 126 125 122 .108 128
MPcpp 1 115 115 .119 115 .103 121

Table 2. Quantitative comparison with ablation models. We ab-
late the proposed localized editing (W/0 Lyegion, W/0 Lopacity, and
w/0 L) and text-driven objectives (w/0 Lgiopa and w/o Lgir).

between the edited image and target text. The CLIP score
is obtained by averaging CLIP similarity and Directional
CLIP similarity [12]. For a fair comparison, we used CLIP
ViT-L/14 to calculate the CLIP score instead of CLIP ViT-
B/32 used to train Blending-NeRF and the baselines. Fi-
nally, the CLIP based MP metric is defined as MPcp =
(1 — Dp,) x Scup. We calculated all these metrics using
60 different scenes for each model.

Comparisons We qualitatively and quantitatively com-
pared the performance of Blending-NeRF with three vari-
ants of CLIP-NeRF. Our method outperformed all base-
lines, as shown in Figure 6. The CLIP-NeRF variants were
able to perform the color change task (mic — crochet mic),
but struggled with the density change tasks. Although the
localizing module helped CLIP-NeRF-D to edit the target
region well, it still had difficulty in editing the densities of
the target object. As indicated by Wang et al. [35], this
demonstrates that relying on the simple fine-tuning of a sin-
gle NeRF to generate new densities in the low initial density
area or to alter existing densities through a CLIP-driven ob-
jective is not sufficient for achieving complete localized ob-
ject editing of shapes. Instead, we found in our experiments
that using our novel dual NeRF architecture to blend volu-
metric information from two independent NeRFs, namely,
pretrained NeRF capturing the original 3D model and ed-
itable NeRF capturing object editing information, and spec-
ifying the positive and negative regions to help the blended
editing focus on the target regions results in more natural lo-
calized object editing. These qualitative results in Figure 6
are consistent with the superior quantitative performance of
our model, measured using MP metric, as shown in Table 1.

Figure 8. Ablation study on the localized editing objectives. The
‘hotdog’ object is edited with ‘stained glass hotdog’ (upper row)
and ‘hamburger’ (bottom row) as the target texts.

5.4. Ablation Study

To validate the effect of our text-driven and localized
editing losses, we compared the performance qualitatively
as well as quantitatively when each loss term was removed
from the total objective. We first performed an ablation
study on text-driven losses, as shown in Figure 7. In the
‘submarine’ case, when global CLIP loss was not used (w/o
Lylobal), the result was blurry with degraded quality. Simi-
larly, in the ‘exploding boat’ case, when only global CLIP
loss was used (w/o L), the explosion effect was not well
expressed, resulting in a poor editing performance. These
results are also consistent with the poor CLIP scores and
MP metrics, as shown in Table 2. That is, using both global
and directional losses enhances the overall editing quality.

We further analyzed the effect of localized editing losses
on localizing the target region. As shown in Figure 8, when
each localized editing loss was excluded (i.e., W/0 Lregion
or wW/0 Lopacity), the editing regions were not well targeted
or adequately constrained overall. As shown in Table 2,
these results are also consistent with the low MP metric (w/o
Lregion) and the poor preservation score (W/0 Lopacity). Addi-
tionally, for the w/o L., in the ‘hamburger’ case, the edited
object has ambiguous boundaries. In contrast, our method
edits objects with clear boundaries and less noise. This
result implies that the regularization loss guides Blending-
NeRF to add density distinctly, improving the MP metric as
shown in Table 2. That is, our method can locally and nat-
urally edit the target object in the original scene with only
minor modifications to the regions of non-interest.

5.5. Extendability of Blending-NeRF

We investigated the extendability of the proposed
method using Instant-NGP [23] which utilizes hash grid
encoding to represent a 3D scene with low computational
cost. The localized editing results on real scenes [22] in
Figure 9 demonstrate that our method can be integrated
with other 3D scene representation methods such as Instant-
NGP. In this experiment, Blending-NeRF was able to inherit
the advantages of Instant-NGP over the originally proposed

source o

bject

swarovski blue
crystal flower, *

flower snow on flower deck

Figure 9. Examples of localized editing on the pinecone and
vasedeck scenes. Blending-NeRF with Instant-NGP was used for
these results. (* : trending on artstation)

NeRF [22] on memory efficiency and training time. For
more results and implementation details, refer to Section E
of Appendix.

5.6. Editing Operations

Our approach explicitly distinguishes editing operations,
such as adding and removing density, and changing color.
The editing results can vary even for the same scene and
text, depending on the manually specified editing opera-
tions. By choosing different combinations of the editing
operations, users have the ability to achieve desired editing,
as shown in Figure 10.

source object

i) I 9

pinecone 2> burning pinecahe,(a DSLR poto

Figure 10. Experiments on using different editing operations. The
source object (‘pinecone’) is edited into each object using the same
target text (‘burning pinecone, a DSLR photo’) with different com-
binations of editing operations. Note that Blending-NeRF with
Instant-NGP was used for these results.

5.7. Limitations

Our work has limitations in that the overall performance
can be affected by the two off-the-shelf models, CLIPSeg

§=36
eco

§=72

§=128 S =164

boat > cyberpunk neon boat

boat > galaxy big bang explosion on boat

Figure 11. Experiments on object editing with various patch sizes.
The numbers at the top denote each patch size used. The source
object (‘boat’) is edited into each object using two target texts:
‘cyberpunk neon boat’ (top row) and ‘galaxy big bang explosion
on boat’ (bottom row), respectively. Note that Blending-NeRF
with Instant-NGP was used for these results.

and CLIP. For instance, if the segmentation of the target
area by CLIPSeg is not appropriate, unedited parts may re-
main. This performance degradation can be mitigated by
using advanced segmentation models or a potential solution
described in Appendix (i.e., user-provided mask).

Additionally, we found that the limited patch size input
to CLIP’s image encoder can make edited results blurry.
The input size of the CLIP encoder is 224, but we used a
patch size of 72 due to our computational resources when
we used the originally proposed NeRF [22] as a backbone.
However, this issue can be alleviated by using a memory-
efficient backbone (i.e., Instant-NGP). As shown in Fig-
ure 11, where we applied the proposed method to Instant-
NGP as described in Section 5.5, the blurry results were im-
proved as the patch sizes increased. Considering the trade-
off between the quality improvement and the increase in
computational time, we set the patch size as 128 for our
experiments using Instant-NGP.

6. Conclusion

For text-driven localized 3D object editing, we propose
Blending-NeRF, which consists of pretrained NeRF and ed-
itable NeRF. The target region for editing is specified by the
source text and the original object in the pretrained NeRF.
Blending-NeRF renders blended images of two NeRFs suit-
able for the target text by freezing the pretrained NeRF and
training the editable NeRF to locally edit the original ob-
ject while maintaining the overall appearance. Especially,
we define three types of editing operations (i.e., adding or
removing density, changing color) and use them to perform
various 3D object editing. Empirical results show that our
approach is superior to text-driven localized object editing.
We firmly believe that the proposed method and localized
object editing tasks hold practical value in neural rendering.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended
diffusion for text-driven editing of natural images. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 18208-18218, 2022. 3

Omer Bar-Tal, Dolev Ofri-Amar, Rafail Fridman, Yoni Kas-
ten, and Tali Dekel. Text2live: Text-driven layered image
and video editing. arXiv preprint arXiv:2204.02491, 2022.
3,5,13

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5855-5864,
2021. 2

Yongwei Chen, Rui Chen, Jiabao Lei, Yabin Zhang, and
Kui Jia. Tango: Text-driven photorealistic and robust
3d stylization via lighting decomposition. arXiv preprint
arXiv:2210.11277,2022. 1,2

Jian Ding, Nan Xue, Gui-Song Xia, and Dengxin Dai. De-
coupling zero-shot semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11583-11592, 2022. 3

Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano,
Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-
guided domain adaptation of image generators. ACM Trans-
actions on Graphics (TOG), 41(4):1-13, 2022. 3

Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang.
Dynamic view synthesis from dynamic monocular video. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5712-5721, 2021. 2

Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter
Abbeel, and Ben Poole. Zero-shot text-guided object genera-
tion with dream fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
867-876,2022. 1, 2,5

Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf
on a diet: Semantically consistent few-shot view synthesis.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5885-5894, 2021. 4

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representa-
tion learning with noisy text supervision. In International
Conference on Machine Learning, pages 4904-4916. PMLR,
2021. 3

Nasir Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu
Popa. Clip-mesh: Generating textured meshes from text
using pretrained image-text models. ACM Transactions on
Graphics (TOG), Proc. SSIGGRAPH Asia, 2022. 2

Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Dif-
fusionclip: Text-guided diffusion models for robust image
manipulation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2426—
2435, 2022. 3,8

(13]

(14]

(15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitz-
mann. Decomposing nerf for editing via feature field dis-
tillation. arXiv preprint arXiv:2205.15585, 2022. 7
Han-Hung Lee and Angel X Chang. Understanding pure
clip guidance for voxel grid nerf models. arXiv preprint
arXiv:2209.15172,2022. 1,5, 13

Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip HS
Torr. Manigan: Text-guided image manipulation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7880-7889, 2020. 7

Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen
Koltun, and René Ranftl. Language-driven semantic seg-
mentation. arXiv preprint arXiv:2201.03546, 2022. 3
Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli
Ouyang, Jing Shao, Fengwei Yu, and Junjie Yan. Su-
pervision exists everywhere: A data efficient contrastive
language-image pre-training paradigm. arXiv preprint
arXiv:2110.05208, 2021. 3

Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard
Zhang, Jun-Yan Zhu, and Bryan Russell. Editing conditional
radiance fields. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 5773-5783,
2021. 1,2

Timo Liiddecke and Alexander Ecker. Image segmenta-
tion using text and image prompts. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7086-7096, June 2022. 2, 3, 5,
12

Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7210-7219, 2021. 4

Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and
Rana Hanocka. Text2mesh: Text-driven neural stylization
for meshes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13492—
13502, 2022. 1,2

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99-106, 2021. 1,
2,6,8,9

Thomas Miiller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(ToG), 41(4):1-15, 2022. 2, 8, 12, 17

Keunhong Park, Konstantinos Rematas, Ali Farhadi, and
Steven M. Seitz. Photoshape: Photorealistic materials for
large-scale shape collections. ACM Trans. Graph., 37(6),
Nov. 2018. 2

Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
and Dani Lischinski. Styleclip: Text-driven manipulation of
stylegan imagery. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 2085-2094,
2021. 3

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv
preprint arXiv:2209.14988, 2022. 1,2

Thomas Porter and Tom Duff. Compositing digital images.
In Proceedings of the 11th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’84, page
253-259, New York, NY, USA, 1984. Association for Com-
puting Machinery. 3

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748-8763. PMLR, 2021. 2, 3

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In International Confer-
ence on Machine Learning, pages 8821-8831. PMLR, 2021.
2

Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in Neural Information
Processing Systems, 35:36479-36494, 2022. 2

Aditya Sanghi, Hang Chu, Joseph G Lambourne, Ye Wang,
Chin-Yi Cheng, Marco Fumero, and Kamal Rahimi Malek-
shan. Clip-forge: Towards zero-shot text-to-shape genera-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 18603-18613,
2022. 2

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
NieBner, Gordon Wetzstein, and Michael Zollhofer. Deep-
voxels: Learning persistent 3d feature embeddings. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2437-2446, 2019. 2
Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele
Chen, Junsong Yuan, Yi Xu, and Andreas Geiger. Nerf-
player: A streamable dynamic scene representation with de-
composed neural radiance fields. I[EEE Transactions on Visu-
alization and Computer Graphics, 29(5):2732-2742, 2023.
2

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5459—
5469, 2022. 2

Can Wang, Menglei Chai, Mingming He, Dongdong Chen,
and Jing Liao. Clip-nerf: Text-and-image driven manip-
ulation of neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3835-3844,2022. 1,2,3,7,8, 12
Zhaoqing Wang, Yu Lu, Qiang Li, Xunqgiang Tao, Yandong
Guo, Mingming Gong, and Tongliang Liu. Cris: Clip-
driven referring image segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11686—11695, 2022. 3

(37]

(38]

(39]

(40]

[41]

[42]

Tianhao Wu, Fangcheng Zhong, Andrea Tagliasacchi, For-
rester Cole, and Cengiz Oztireli. D™ 2nerf: Self-supervised
decoupling of dynamic and static objects from a monocular
video. Advances in Neural Information Processing Systems,
35:32653-32666, 2022. 2

Mengde Xu, Zheng Zhang, Fangyun Wei, Yutong Lin, Yue
Cao, Han Hu, and Xiang Bai. A simple baseline for zero-
shot semantic segmentation with pre-trained vision-language
model. arXiv preprint arXiv:2112.14757,2021. 3

Wentao Yuan, Zhaoyang Lv, Tanner Schmidt, and Steven
Lovegrove. Star: Self-supervised tracking and reconstruc-
tion of rigid objects in motion with neural rendering. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13144-13152, 2021. 2
Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma,
Rongfei Jia, and Lin Gao. Nerf-editing: geometry editing of
neural radiance fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
18353-18364, 2022. 1, 2

Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner,
Daniel Keysers, Alexander Kolesnikov, and Lucas Beyer.
Lit: Zero-shot transfer with locked-image text tuning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 18123-18133, 2022. 2,
3

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song
Han. Differentiable augmentation for data-efficient gan
training. In Conference on Neural Information Processing
Systems (NeurIPS), 2020. 5, 13

Blending-NeRF: Text-Driven Localized Editing in Neural Radiance Fields
Supplementary Material

A. Implementation Details
A.1. Dilatation Operations

We use CLIPseg [19] to extract the target regions for localized editing. Specif-
ically, CLIPSeg takes an image of size 352 x 352 as input, so we resize the
S x S size rendered original patch 7°(6, p) to 352 x 352 before feeding it to
CLIPSeg. We then estimate the target region M using the source text and the base
text ‘photo’. The dilatation operations with a kernel of size 5 x 5 are applied to
obtain positive (M) and negative target (M_) regions with N; and 2N times
as shown in Figure 12. After this step, the regions are resized to fit the rendered
image size S x S and the rest of the process is performed. We use the consistent
notation M, and M_ for readability.

A.2. Hyperparameter for Region Loss Figure 12. Positive and negative target re-

We observed that if adding densities is included in the editing operations, gions (Ny = 10).

Blending-NeRF has difficulty making densities at initial when giving the same
weights (i.e. AL = 1) to the positive and negative regions in the 10ss Lregion Of
Eq. (12), especially for the small target region. To compensate for this, we set A by the ratio r as:

r = max(30, (S? — area of M)/ (1 + area of M)) (16)

Note that this method is only used for object editing task that involves the adding density operation.

A.3. Patch Sampling for Training

Given the sampled camera pose p, the rays are sampled at even intervals to make an image patch covering the entire extent
of the image plane. Specifically, let the width and height of the image plane and the patch size be W, H, and .S, respectively;
the starting points along each axis are uniformly sampled by the following distributions:

U, |[W/S|+ (W mod S)—1) an

U, | H/S] + (H mod S) —1).
From these starting points, image patches are rendered at even intervals with horizontal stride |W/S] and vertical stride
| H/S|. Finally, we can obtain .S’ x .S image and opacity patches.

A.4. Training Time

We train our model with 3k iterations on tasks that only change color or remove densities. In the tasks of adding densities
with color change and the tasks of adding only densities, we iteratively train our model for 4k and 5k, respectively. Our
method takes about 12 minutes to train 1k iterations on a single NVIDIA RTX A5000. It takes slightly longer than CLIP-
NeRF [35]" which takes about 9 minutes to train 1k iterations due to our blending operations and additional objectives. Note
that our approach can be extended to other more efficient 3D representation methods such as Instant-NGP [23]. The detailed
experiments incorporated with Instant-NGP are described in Section E.

Ihtt ps://github.com/cassiePython/CLIPNeRF

https://github.com/cassiePython/CLIPNeRF

Position x Direction d
]

A.5. Annealing Thresholds

: Positional encoder

For the editable amount constraint, we anneal two thresholds: 7#4¢ and
rchange We use different target threshold values for each object editing
task. Generally, 7%%? is linearly annealed from 0.8 to the target value during
the first 100 steps and remains the target value for the rest of the steps.

Similarly, 7¢"%"9¢ is annealed from 0.5-0.15 to the target value.

FC
: Fully connected layer

: Residual block

A.6. Editable NeRF Architecture

The detailed architecture of editable NeRF using residual blocks is
shown in Figure 13. The editable NeRF extends NeRF to produce a den-
sity ¢ € [0,00) and color c® € [0, 1], in addition to two blending ratios

Editable Color Editable

Density

Bc c [07 1] and Bo’ c [0’ 1]’ respectively. color blending density blending

c® ratio o€ ratio

B* B?

Figure 13. Editable NeRF Architecture.

B. Ablation Study

Dilatation operations To investigate the effect of the number of dilatation operations used in localizing the target, we
qualitatively compare the editing results with different Ny as shown in Figure 14. As shown in the upper row, the larger
the number of dilatation operations, the larger the object is created as the target region grows. In the experiment that only
changes the color, if Ny becomes too large, noise appears on the object as shown in the bottom row.

boat

bulldozer

Figure 14. Ablation study on N;. The ‘boat’ object is edited to ‘iceberg’ (upper row) with 7% = 0.35 and 7°™*° = 0.05, and the
‘bulldozer’ is edited to ‘marble bulldozer’ with 7" = 0.2 (bottom row).

Constraining the amount of editing We also analyze the effect of the thresholds 72¢¢ and 7¢"*"9¢ ysed in constraining
the amount of editing. As shown in the upper row of Figure 15, the larger the threshold 724 for adding densities, the denser
the object is created. Similarly, in an experiment that only changes color, the amount of change in the object is limited by the
threshold 7¢hange,

Image and text augmentations We augment text and images to improve the editing quality. Specifically, we augment
original, editable, and blended images using differential [42] and random perspective augmentations in the same order as in
[14]. Differential augmentations include color jittering, translation, and cut-out with the same setting as [42]. In the case of
random perspective augmentation, we set the distortion scale as 0.4 with a probability of 0.5. From a rendered image, we
obtain 24 augmented images, including the rendered image itself, and feed them to the image encoder of CLIP. We use the
same templates for text augmentations as [2] before feeding the source and target text to the text encoder of CLIP. A random
number of randomly selected text templates are applied to the source and target texts to form the augmented texts.

~

boat

bulldozer

Figure 15. Ablation study on 7. The ‘boat’ object is edited to ‘iceberg’ (upper row) with Ny = 10 and 7" = 0.05, and the ‘bulldozer’
is edited to ‘marble bulldozer’ with Ny = 3 (bottom row).

We analyze the effect of augmentations by comparing the results when each augmentation is removed from the overall
methods. As shown in Figure 16, without augmenting the rendered images (w/o img aug), the added object has quality degra-
dation, such as blurred and ambiguous boundaries. We also noticed that among differential and perspective augmentations,
the former has more effect on the quality improvements (w/o diff). Similarly, without text augmentations (w/o text aug),
there is a slight deterioration in quality.

ours w/o perp w/o diff w/o img aug w/o text aug
cee i

boat

Figure 16. Ablation study on augmentations. The ‘boat’ object is edited to ‘fantasy modern city’.

C. User Study

We conducted a user survey to evaluate the performance of our approach against the other three baselines. We asked 30
users to evaluate 20 randomly selected pairs from target text and rendered image pairs in a total of 60 scenes. The rendered
images consist of four edited images rendered using each model, including all baseline results and ours, in addition to the
original image. For a fair comparison, we randomly shuffled the order of the edited images. Then, each user was asked to
assign a score (1-10) for each edited image based on the following criterion: “How well is the image edited to match the
target text relative to the amount the original object has changed?”. We report the mean scores in Table 3. Our approach
obtained the highest user score, demonstrating once again the super performance of Blending-NeRF for text-driven editing.

CLIP-NeRF-¢c ~ CLIP-NeRF-f CLIP-NeRF-D Ours
score 3.04 3.99 4.80 717

Table 3. Human assessment result for comparison with baselines. We report the mean score indicating the precision of text-driven editing
by users. Our method outperforms all baselines.

D. Experiments Using User-Provided Mask

Additionally, we introduce a method using a user-provided tar-
get region for localized editing. We use this method to address two
issues related to the target region. The first is that the text-based
image segmentation is not accurate as shown in Figure 17. The sec-
ond issue is that users may not be able to specify the target region
with a text prompt. To address these issues, we manually set the
target region mask to be edited from three appropriate viewpoints as
shown in Figure 18. Then, in the middle of training (i.e. once every
5 training iterations), we use the user-provided masks. Specifically,
when the user-provided masks are given to remove noise as shown
in 18-(a), the masks are used once out of 5 training iterations, and
the existing segmentation results are used for the rest. On the other
hand, if masks are provided to edit a specific region that cannot be

Figure 17. Inaccurate segmentation result for an image
and a queried text ‘brown-jar’. This incorrect segmenta-
tion may reduce the quality of localized object editing.

specified by a text (e.g., ‘over the boat’) as shown in 18-(b), image segmentation is not used. We present some editing
results using two kinds of user-provided masks: masks for removing noise and masks for editing a specific area. First, as
shown in Figure 19, by giving accurate masks for editing, the existing noise caused by inaccurate segmentation can be re-
moved. Second, as shown in Figure 20, by only using masks specifying the target regions, Blending-NeRF can accurately
change the colors of the object (e.g., ‘cymbals’ to ‘cosmic cymbals’) and add densities to the scene (e.g., ‘bulldozer’ to

‘ruby in bulldozer bucket’).

Figure 18. Users can utilize the user-provided image masks (a) to remove noise, or (b) to edit a specific region on the 3D objects.

gold texture *

oil pastel *

Figure 19. Examples of removing noise. By using user-provided masks, existing noise can be removed.

cosmic cymbals ruby in bulldozer bucket full moon over the boat meteor falls on the boat

Figure 20. Examples of object editing using user-provided masks. If it is difficult to specify the target region with the source text, a user-
provided mask can be used.

E. Applying Blending-NeRF to Instant-NGP

Our novel layered architecture and blending operations for 3D object editing can be applied to other neural scene rep-
resentations such as Instant-NGP. To demonstrate our approach can be incorporated with other 3D representation methods,
we further experimented using Instant-NGP as a backbone which utilizes multi-resolution hash encoding to represent high-
frequency details of a scene with low computational cost.

We used the PyTorch and CUDA based reimplementation” of Instant-NGP, and the default settings in the codes were used.
We applied the regularization loss Ly, at the start of training and set its weight as A3 = 1.0. The initial learning rate was
set to 1 x 1073, and the rest of the hyperparameters were used the same. We trained all the edited scenes for 2k iterations
with the patch size S = 128, taking about 9 minutes to edit each scene on a single NVIDIA RTX A5000. Figure 21 shows
the locally edited 3D objects on the ship scene with a wide range of target texts. The experimental results confirm that our
approach can be incorporated with the other 3D representation methods.

Zhtt ps://github.com/kweal23/ngp_pl

https://github.com/kwea123/ngp_pl

Source object

rainbow colored flame on boat

house made of sweets, trending on
artstation

fantasy big trees colorful forest,
trending on artstation

o
[]

wood raft, trending on artstation

a stack of pancakes, trending on
artstation

cee e0e

boat inside blackhole, a DSLR photo shipwreck

disappearing boat 7 water ghost ship
Figure 21. Editing results of our method integrated with Instant-NGP [23]. The source object (‘boat’) at the top left is edited into each
object using the target text at the bottom of each scene. For example, the result in the last column of the second row is edited from ‘boat’
to ‘rainbow colored flame on boat’, combining color change (e) and density addition (e).
e : changing colors : adding densities e : removing densities.

